1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
|
package main
import (
"fmt"
"strconv"
)
func validCellValue(inputValue byte)(bool){
// Converting byte value to integer
// to validate if inputValue lies between 1-len(board)
intInputValue, _ := strconv.Atoi(string(inputValue))
if ((intInputValue<10) && (intInputValue>0)){
return true
}
return false
}
func checkRowValidity(board [][]byte)(bool){
// Iterating over each row
// The length of board the could be hard coded to 9
for rowIndex:=0;rowIndex<len(board);rowIndex++{
// The rowHashMap would be used to check for
// repeating values in the row
rowHashMap:=make(map[byte]int)
// Iterating over each column in the row
for colIndex:=0;colIndex<len(board);colIndex++{
cellValue := board[rowIndex][colIndex]
// If the value of the cell isn't blank i.e. "."
if(string(cellValue) != "."){
// If the cell value is within 1-9
if(validCellValue(cellValue)){
// Check for value in rowHashMap
_, key_exists := rowHashMap[cellValue]
if key_exists{
// Exit the function if we
// encountered a repeating value
// in the current row
return false
} else {
// If value isn't present
// then add it the the hashmap
rowHashMap[cellValue] = 1
}
} else {
// Exit the function if we
// encountered a value that's not
// within range 1-9
return false
}
}
}
}
return true
}
func checkColValidity(board [][]byte)(bool){
// Iterating over each column
for colIndex:=0;colIndex<len(board);colIndex++{
// The colHashMap would be used to check for
// repeating values in the column
colHashMap:=make(map[byte]int)
// Iterating over each row in the column
for rowIndex:=0;rowIndex<len(board);rowIndex++{
cellValue := board[rowIndex][colIndex]
// If the value of the cell isn't blank i.e. "."
if(string(cellValue)!="."){
// If the cell value is within 1-9
if(validCellValue(cellValue)){
// Check for value in colHashMap
_, key_exists := colHashMap[cellValue]
if key_exists{
// Exit the function if we
// encountered a repeating value
// in the current column
return false
} else {
// If value isn't present
// then add it the the hashmap
colHashMap[cellValue] = 1
}
} else {
// Exit the function if we
// encountered a value that's not
// within range 1-9
return false
}
}
}
}
return true
}
func checkSubMatrixValidity(board [][]byte)(bool){
// Iterating over every 3rd row
for rowIndex:=0;rowIndex<len(board);rowIndex+=3{
// Iterating over every 3rd column
for colIndex:=0;colIndex<len(board);colIndex+=3{
// The subMatrixHashMap would be used to check for
// repeating values in the 3x3 sub-matrix
subMatrixHashMap := make(map[byte]int)
// Iterate over every row in the sub-matrix
for i:=0;i<3;i++{
// Iterate over every column in the sub-matrix
for j:=0;j<3;j++{
cellValue := board[rowIndex+i][colIndex+j]
// If the value of the cell isn't blank i.e. "."
if(string(cellValue)!="."){
// If the cell value is within 1-9
if(validCellValue(cellValue)){
// Check for value in subMatrixHashMap
_, key_exists := subMatrixHashMap[cellValue]
if key_exists{
// Exit the function if we
// encountered a repeating value
// in the current sub-matrix
return false
} else {
// If value isn't present
// then add it the the hashmap
subMatrixHashMap[cellValue] = 1
}
} else {
// Exit the function if we
// encountered a value that's not
// within range 1-9
return false
}
}
}
}
}
}
return true
}
func isValidSudoku(board [][]byte)(bool){
if(checkRowValidity(board) &&
checkColValidity(board) &&
checkSubMatrixValidity(board)){
return true
}
return false
}
func main(){
// A valid sudoku grid
// inputBoard := [][]string{
// {"5", "3", ".", ".", "7", ".", ".", ".", "."},
// {"6", ".", ".", "1", "9", "5", ".", ".", "."},
// {".", "9", "8", ".", ".", ".", ".", "6", "."},
// {"8", ".", ".", ".", "6", ".", ".", ".", "3"},
// {"4", ".", ".", "8", ".", "3", ".", ".", "1"},
// {"7", ".", ".", ".", "2", ".", ".", ".", "6"},
// {".", "6", ".", ".", ".", ".", "2", "8", "."},
// {".", ".", ".", "4", "1", "9", ".", ".", "5"},
// {".", ".", ".", ".", "8", ".", ".", "7", "9"},
// }
inputBoard := [][]byte{
{53,51,46,46,55,46,46,46,46},
{54,46,46,49,57,53,46,46,46},
{46,57,56,46,46,46,46,54,46},
{56,46,46,46,54,46,46,46,51},
{52,46,46,56,46,51,46,46,49},
{55,46,46,46,50,46,46,46,54},
{46,54,46,46,46,46,50,56,46},
{46,46,46,52,49,57,46,46,53},
{46,46,46,46,56,46,46,55,57}}
fmt.Println("Validitity of sudoku grid:", isValidSudoku(inputBoard))
// An invalid sudoku grid (Repeating 8s in first column)
// inputBoard := [][]string{
// {"8", "3", ".", ".", "7", ".", ".", ".", "."},
// {"6", ".", ".", "1", "9", "5", ".", ".", "."},
// {".", "9", "8", ".", ".", ".", ".", "6", "."},
// {"8", ".", ".", ".", "6", ".", ".", ".", "3"},
// {"4", ".", ".", "8", ".", "3", ".", ".", "1"},
// {"7", ".", ".", ".", "2", ".", ".", ".", "6"},
// {".", "6", ".", ".", ".", ".", "2", "8", "."},
// {".", ".", ".", "4", "1", "9", ".", ".", "5"},
// {".", ".", ".", ".", "8", ".", ".", "7", "9"},
// }
inputBoard = [][]byte{
{56,51,46,46,55,46,46,46,46},
{54,46,46,49,57,53,46,46,46},
{46,57,56,46,46,46,46,54,46},
{56,46,46,46,54,46,46,46,51},
{52,46,46,56,46,51,46,46,49},
{55,46,46,46,50,46,46,46,54},
{46,54,46,46,46,46,50,56,46},
{46,46,46,52,49,57,46,46,53},
{46,46,46,46,56,46,46,55,57}}
fmt.Println("Validitity of sudoku grid:", isValidSudoku(inputBoard))
// An invalid sudoku grid (Repeating 8s in the first 3x3 submatrix)
// inputBoard := [][]string{
// {"5", "3", ".", ".", "7", ".", ".", ".", "."},
// {"6", "8", ".", "1", "9", "5", ".", ".", "."},
// {".", "9", "8", ".", ".", ".", ".", "6", "."},
// {"8", ".", ".", ".", "6", ".", ".", ".", "3"},
// {"4", ".", ".", "8", ".", "3", ".", ".", "1"},
// {"7", ".", ".", ".", "2", ".", ".", ".", "6"},
// {".", "6", ".", ".", ".", ".", "2", "8", "."},
// {".", ".", ".", "4", "1", "9", ".", ".", "5"},
// {".", ".", ".", ".", "8", ".", ".", "7", "9"},
// }
inputBoard = [][]byte{
{53,51,46,46,55,46,46,46,46},
{54,56,46,49,57,53,46,46,46},
{46,57,56,46,46,46,46,54,46},
{56,46,46,46,54,46,46,46,51},
{52,46,46,56,46,51,46,46,49},
{55,46,46,46,50,46,46,46,54},
{46,54,46,46,46,46,50,56,46},
{46,46,46,52,49,57,46,46,53},
{46,46,46,46,56,46,46,55,57}}
fmt.Println("Validitity of sudoku grid:", isValidSudoku(inputBoard))
}
// Output
// Validitity of sudoku grid: true
// Validitity of sudoku grid: false
// Validitity of sudoku grid: false
|